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FOREWORD

I The work described in this report was performed by the Martin
Company for the NASA Manned Spacecraft Center under Contract
No. NAS 9-4370.
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This study has demonstrated the feasibility of the Virtua! Mass
Technique for computing space trajectories and has developed a
FORTRAN IV digital computer program for solving the restricted
three-body problem by this procedure. The virtual mass at any in-
stant of time replaces the combined gravitational effects of all the
real celestial bodies upon a spacecraft. The magnitude and location
of this fictitious body, along the line of the instantaneous resultant
force vector, are uniquely computed by formulas derived from the
generalization of the gravispheric force center concept. The compu-
tational procedure is based upon the assumption that, over a small
time interval, the spacecraft motion can be represented as a two-
body conic section arc relative to the moving and varying virtual mass.
In this manner the complete trajectory is computed as a series of such
arcs, pieced together in a stepwise manner--updating the position and
magnitude of the apparent force center at each step. Thus, the virtual j
mass technique is like the patched conic approximation in that no differ-
ential equations are integrated numerically. It is similar to the
Cowell method in that the equations for the virtual mass are much like
the acceleration contribution terms in the differential equations of mo-
tion. As the spacecraft nears one of the real physical bodies, those
terms dominate the contributions of the other bodies and the effective

force center approximates that real body in size and location. Finally,
this technique displays a kinship to the Encke method in the computa-
tion of a reference trajectory relative to the dominant body. This
dominating body, however, is the continuously moving and varying
virtual mass rather than one of the physical bodies. Since the perturb-
ing effects of all bodies are included in the determination of this ap-
parent force center, effectively a perfect rectification is made at each
step and there is no need to numerically integrate these perturbations.

A single compact computer program embodying this procedure can
be controlled very simply to compute an approximate solution rapidly
as a series of relatively few patched conics or a highly accurate
trajectory as a large number of such arcs at the expense of propor-
tionately longer computation time. For example, a 70.33-hr insertion-
tolpericynthion circumlunar trajectory was computed (and a large
amount of output data were printed) in 160 seconds on an IBM 7094
computer. This trajectory gave the spacecraft position at pericynthion
accurate to within 0.02 naut mi and exhibited a total variation of the

Jaccbi energy of less than 2 parts out of 7 x 106. __I_/_(_)
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I. INTRODUCTION

It is well known that there is no closed-form general solution for the
trajectory of an infinitesimal spacecraft freely falling in the combined
gravity fields of two or more large celestial bodies. Therefore, each
case must be solv,_d individually by an approximate numerical proce-
dure. Currently, two alternative procc.dures are used for finding such
solutions; namely, the patched conic approximation technique and the
accurate numerical integration of the differential equations of motion.

'fhe patched conic technique makes the simplifying assumption that,
while the spacecraft is within the sphere of influence of any gravitating
body, the motion is dominated by that large body to the complete ex-
clusion of all others. Since the general solution to the two-body prob-
lem is known to be a Keplerian conic section, a crude app:oximation
to the n-body solution can be computed as a series of thes,: preintegrated
conic sections, patched together appropriately at the boundaries of the ,_
spheres of influence.

The precise numerical solution of the differential equations involves t
rather laborious step-by-step computation procedures, based upon one
of two fundamental approaches.

The straightforward method of Cowell treats all terms in the
differential equations as contributors of equal importance. Most of
the time, however, the acceleration experienced by the infinitesimal

body is dominated by a single one of the gravitating bodies, and all
other contributions are small by comparison. This requires that great
care be exercised when combining all the terms so as not to lose the
significance of the small contributions. This computational difficulty

_::i tends to offset the advantage of the formulational simplicity of this method.

" The other basic approach (due to Encke) consists of recognizing
'/

this domination of the motion by one body and computing the trajectory
!_ in two stages. First, the position and velocity at some time (epoch)

are considered to define the elements of the osculating Keplerian conic

section relative to the dominant body. Then, the perturbing relative
accelerations of the less influential bodies are numerically integrated,f_
carrying comparatively few significant digits, to obtain the path correc-

*' tion to be applied to the basic Keplerian motion. As the magnitude of
the perturbed motion grows larger, accuracy would be lnst without
carrying more significant figures. Instead, when this h___pens, the

11 II

reference conic section is rectified to obtain new osculating elements
at a later epoch, thus reducing the magnitude of the perturbations.

This procedure works well for the case where the motion is always
dominated by one particular body, as is the case for the planetary
motions about the sun. Spacecraft on lunar or interplanetary trajectories,

ER 14045
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on the other hand, traverse from one sphere of inf!;_ence to another--
falling under the domination of successively different reference bodies.
During the transitions from one reference body to aoother, the opace-
craft is literally torn between the two major attractions. Sophisticated
logic is required to enable the computer to select the dominant body
and to switch from one reference body to another to ensure that this
computational discontinuity does not disturb the co,_tinuity of the tra-
jectory being integrated.

This sophistication is generally considered worthwhile, for the
Encke integration step size can be much larger than that of the Cowell
method. The final selection of one or the other probably is more a
matter of personal preference, however, since the Cowell step can be
be executed much faster.

Regardless of which integration procedure is used, the solution
methods described offer the choice betw,,:en a very crude, rapidly
computed, patched conic trajectory and a high precision comparatively
slow- running integrated solution. The former type is useful for
parametric studies and early mission planning purposes to determine
approximate injection conditions. The latter is needed for the re-
finement of rough initial conditions into an accurate determination of h_:
the requirements for a spec.!_c n::_zsion. Aside from the fact that
two different programs are needed, this refinement process may in-
volve iterative computation w._,th the accurate but slow-running pro-
gram. This is due to the wide gap between the crude approximation
and the precision soluLion and to the very high sensitivity of space
trajectories to errors in initial conditions.

This report des bes a unique method of conmuting n-body tra-
jectories which off, rs, in a single digital compa!:, r program, the
capability of efficiently covering the ccmplete s!,uctrum from rapid
crude solutions to more time-consuming accu_'a,,_c solutions. Chapter
II describes the basic concept upon which the :',_nputation is based,
and Chapter III discusses various consider:,_i,,as which must be made
in mechanizing this concept for digital co_,,_:,,_:ation. Chapter IV pre-
sents the quantitative results of the stud:,, :,_' these considerations, there-
by showing how these items have been implemented. Chapter V gives
a general description of the computer program and complete instruc-
tions in the use of it. For the reader who is interested or who desires

to make changes for his own requirements, a detailed description is
given in Chapter VI, including a complete FORTRAN _'sting of the program.

ER 14045
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II. BASIC PRINCIPLES OF THE VIRTUAL MASS

The concept of the virtual mass is based upon the idea of replacing
the colnbined gravitational effects of many large celestial bodi" s upon
an infinitesimal spacecraft by the attraction of a single equivalent body.
This fundamental idea is not new. Its natural applicability to the re-
stricted three-body problem (two large masses and one infinitesimal .-
mass} is described in Refs. 1 and 2. A rather arbitrary attempt was
made to make a similar reduction of the r-body problem in Ref. 3. The
latter consisted of singling one point out of thp. infinite number of possi-
bilities along the line of the in_tantaneet, s resultant gravitational force
on the vehicle. Once the location (assumed inertially fixed} was chosen.
of course, the mass magnitude was determined to give the correct _orce.
T?,e virtual mass location and magnitude, dercribed in this report
however, are derived as the n-body generalization of the gravispheric
force center associated with the restricted three-body problem. There-
fore, the presentation begins with a brief review of what is already known
about the restricted three-body problem and proceeds from there with
the generalization to the case of more than two gravitating bodies.

[

A. REVIEW OF THE RESTRICTED THREE-BODY
PROBLEM IN TERMS OF THE GRAVISPHERE

Consider the simple system comprised of only two large magnitude

point masses _I and _2 and (by comparison) an infinitesimal mass

spacecraft S. The designation of the mass by the symbol F is intended
to suggest that the real quantity of interest is the mass ti:nes the Uni-
versal Gravitation Constant. The locus of all spacecraft positions S

w_'_,h constant ratio p of distances rls, r2s to the two masses is a

spherc with center G on the i._ne through _I and 'a2 as shown in Fig. I.

Since the gravitational attraction depends only upor, displacement from ____._.
the mass, the ratio of the gravitational attractions is also constant on
such a spherical surface; hence, it is called a gravisphere.

The gravisphere exhibits an interesting intrinsic physical property;

namely that, for all points on its surface, the resultant F R of the at-

tractions F 1, F 2 of the two bodies passes through a single focal point

V on the line between _1 and _2 as shown in Fig. 2. The location of

V relative to _1 can be shown (e. g. from relations derived in Ree. 2)
to be

ER 14045
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3

_. -. r2s

rvl = r21 _1 _2
--_ +---y

r

rl_ -2s

where

r.. = r. - r.
lj 1 J

The location of this gravispheric force center can also be expressed
relative to the same frame to which tbe masses are referred:

u 2
3

r 2
r = r 1 + -- r 1 +(r 2- r 1)

v rvl _1 _2
3 + 3

rls r2s

or

_Ir I _2 r2
_-+ 3

.. rls r2s
r -- (II- 1}

v _1 _2
_+ 3

rls r2s

The magnitude of the effective mass (times Universal Gravitation

Constant} _v _.hich must be concentrated at V to replace the combined

effects F R of _1 and _2 also can be derived from expressions given in
Ref. 2 as

v - rvs 3 + 3 (II-2)
rls r2s

Note that, unlike the fixed focal point location, the grav£spheric mass
magnitude varies according to the radial displacement r of the point
on the surface from V. vs

ER 14045
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Fig. 3. Extension of Gravispheric Force Center Concept to More than Two Bodies
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These considerations show ho_ the attractions of two masses on an
infinitesimal spacecraft can be reduced to the instantaneously equivalent
attraction of a single mass. The magnitude and location of this equiva-
lent mass on the line between the gravitating masses can be easily com-

puted from equations {II-1, 2), knowing r s, r 1, r 2, _1 and _2" Observe

that when the spacecraft is ',.quidistant from both bodies rls - r2s and Eq

(II-1) reduces to the usual expression for the center of mass. Thus,
only in this case does the gravispheric force center coincide with the
barycenter. (In this case the gravisphere is the plane dividing the space

between _1 and _2' ) Note also that the mass magnitude equals the total
of the two real masses when the spacecraft is infinitely far displaced.

B. GENERALIZATION OF THE GRAVISPHERIC _ORCE
CENTER CONCEPT TO THE CASE OF MORE THAN

TWO GRA\rITATING BODIES

Extension of the concept of the gravisphere itself to the case of three
or more bodies is impossible. Except under very special circumstances,
there simply are no surfaces of constant ratios of distances or gravita-
tional attractions. However, now that the expressions (II-1) and (II-2)
have been derived, it is no longer necessary to think in terms of these
surfaces used in the derivation. The simpler condition expressed by
these relations suggests the method by which the concept can be extended

: to n bodies. Consider the geometry sketched in Fig. 3. First select

any two masses (say _1 and _2 } and via Eqs (II-1 and 2) replace them
by an equivalent mass appropriate to the spacecraft position relative to
them. Now take this fictitious mass and another one ef the real gravi-

tating bodies (_3' say} and replace these two by a new fictitious mass.
Continue this process, stepping around the system, until all gravitating
rnasses have been replaced by a single equivalent mass.

This geometric description can be expressed analytically by a straight-
f,_rward application of the formulas (II-1, 2). The first step, of course,
yields .,

_lrl ._2r2
+

3 3
-. rls r2sr

v12 _1 _2+
3 3

rl s r2 s
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- r 3 + 3
v12 v12 s r r2s

where the subscripts 12 indicate that these values obtain for masses

ILl' _2" Now again apply the basic formulas, treating _v as _112

r as r 1 and % as _2' r3 as r2:
v12 ..

r % r3_v12 v12
3 _ + 3

rvl2 s r3s--* J
r =

v123 _v!.2 _3
3 + 3

rvl2 s r3s

ILl rl _2 r2 _3 r3
+ +3 3 3

rls r2 s r3s

_i _2 _3
+ +

3 3 3
rl s r2 s r3s

3( v12- r 3 + 3

_v123 v123 s rvl2 s r3s

3 ( _1 _2 _3 )

= r

V123 s 3 + 3 + 3
rls r2s r3s

With repeated application of the procedure, one gets for n gravitating
bodies:

ER 14045
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-_ M
r -

v M
S

3
= r M s_V VS

where

n __ > (II-3)
-_ _ _i ri
M = _a 3ris

i=l

n

Ms-- 3
i = 1 ris

and where

_i - mass of ith gravitating body (times Universal Gravitation
Constant)

r i = position of ith gravitating body

r s = position of spacecraft

-- r. - r
ris I S

= r - r
rvs v s

Equations (II-3) are very simple in form and represent the generaliza-
tion of the gravispheric force center for two gravitating bodies to the
case of n attractive masses. Since the concept of the gravisphere it-
self is inappropriate for the larger number of bodies, this generalized
effective force center is called the "virtual mass. "

Interchanging the indices in Eqs (II-3) does not alter the numerical
values of these expressions. This independence of the order in which
the physical masses are taken demonstrates the uniqueness of the
virtual mass.

It is a simple matter to show that these equations for the virtual
mass define a fictitious body which has the same effect upon the space-
craft as the combined effects of all the real bodies. Consider the

ER 14045
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vector differential equation of motion of the spacecraft:

n

_- i (ri rs)
s 3

i = 1 ris

This equation can be written as

n

-k" n _ti ri "* _i
r s r 3r. 3 s r.

i = 1 is i = 1 is •

= M - r s M s

by Eq (II-3c, d). By Eq (II-3a, b) it becomes

-_ _. PLv -.
rs = Ms (rv- rs) = 3 rvsr

vs

Thus, the virtual mass acceleration of the spacecraft is identical with
the acceleration by the real gravitating bodies.

Equations (II-3) can be differentiated to give the velocity and mass
rate of the virtual mass as functions of the positions and velocities
of the spacecraft and the gravitating bodies:

-%

• _ _ i r. r. Vis
i = 1 ris (II-4)

ER 14045
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n

Ms-- 3 \ris /i-- lris

2,. ..,.
• M r M (II-4)

-_ - V S

rv M
S

tXv = _'v + Mrvs s

where
4

V. 3r. .r.
iS IS IS

r.
is r.

1S

C. THE SOLUTION TO THE N-BODY PROBLEM
AS VIEWED IN THE LIGHT OF THE VIRTUAL MASS

It was shown in the preceding section that at any instant the virtual
mass replaces the aggragate effect on the spacecraft of all the real
gravitating bodies and thereby reduces the n-body problem to an un-
usual type of restricted two-body problem. This reduced problem is
unusual in that the gravitating body does not remain in uniform motion
but accelerates in inertial space and the mass magnitude varies. As
Eqs (II-3) clearly show, whenever the spacecraft is very near to one
of the real bodies (e. g., the jth one), that body' s contribution to the
virtual mass position and magnitude is highly favored (because of the

division by the small rjs3). In such a situation, the virtual mass is

near to the dominant physical body _rv_rj; and essentially matches it

in size (_v =_j)" Slight differences occur due to the perturbing influ-
ences of the other bodies. As the trajectory carries the spacecraft
far away from this real body and under the dominant influence of an-
other one, the virtual mass continuously moves to the vicinity of the
new body and grows or shrinks to nearly its mass magnitude. Thus,
every spacecraft trajectory in an n-body gravity field has associated
with it a separate phantom trajectory of the related virtual mass.

ER 14045
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A simple example of this behavior is illustratedin Fig. 4. The
trajectories shown are for the restricted three-body problem, where
the two-dimensional circumlunar spacecraft trajectory is flown in the
earth-moon orbital plane, Of course, for this case of only two gravitat-
ing bodies, the virtual mass motion is restricted along the earth-moon
line. The two paths are depicted as the solid lines in an inertially
oriented barycentric coordinate system. The moon trajectory is shown,
however, the earth motion has been omitted to keep the curves un-
cluttered near the origin. Relative position lines between the virtual
mass and the spacecraft are shown at several time points by the dashed
lines. To the scale of the plot, the initial virtual mass disp]acement
from the center of earth is indistinguishable. Note also that the virtual
mass coincides with the bacycenter at approximately 22 hr, where the
spacecraft is equidistant from earth and moon. Figure 5 shows the
corresponding variation of the virtual mass magnitude for this example.
The abscissa is the virtual mass displacement along the earth-moon
line. Time points corresponding to those appearing in Fig. 4 are spotted j,,
on the curve.

Of course, the idea is immediately suggested of using the virtual
mass as a means of constructing the spacecraft n-body trajectory in a
stepwise numerical procedure. Consider that the spacecraft position
and velocity are given in some reference frame at some instant of time.
Assume also that an ephemeris gives the positions and velocities of the
gravitating bodies (of known masses) in this same reference frame.
These data are sufficient to compute the virtual mass position, velocity,
mass magnitude and magnitude rates from Eqs (II-3) and (II-4). Then
by simple subtractions, the spacecraft position and velocity vectors
can be computed relative to the virtual mass at this instant of time.
If now the relative motion is computed over some increment of time,
the spacecraft trajectory can be propagated and transformed back to
the reference coordinate frame. The whole process can now be re-
peated with the new position and velocity of the vehicle at the new time.

If the virtual mass were fixed in magnitude and unaccelerated, one
could compute the spacecraft relative motion over any finite arc with
no error as the conic section solution to the two-body problem. The
absolute motion would be exact as well for this case where the fixed

magnitude virtual mass moves with constant velocity. The mass and
velocity do change, however, and hence, the characterizations of the
spacecraft relative motion as a conic section and of the virtual mass
magnitude and velocity as constant are not exact. But this is no
different from any other approximation scheme associated with the
numerical integration of differential equations. The fundamental
theorem of the calculus guarantees that theoretically, the errors of
this approximation will vanish in the limit as the arc length (time in-
crement) approaches zero. There is, of course, a practical limit to
the accuracy which can be achieved due to the limitation of the number

ER 14045
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of digits which can be carried in the computations and the length of
time available to perform them. The next two chapters will treat these
pra3tical aspect,_ of the numerical calculation.

This chapter will be concluded with some observations concerning
this new procedure for solving the n-body problem. There is a simi-
larity to the Cowell method in the procedure of adding up the attrac-
tions of all the real gravitating bodies at each computing step (see
Eqs (II-3)). This summation, however, is not expressed in terms of
the resultant force; but rather as the magnitude and location of a
"virtual mass" which instantaneously produces identically the same
resultant force on the spacecraft. It is like the Encke procedure in
that a Keplerian conic section is computed relative to the virtual mass
as the reference body. Of course, there are no discontinuous jumps
from one reference body to another, since the virtual mass moves
continuously from the vicinity of one real body to that of another as
the spacecraft trajectory is dominated by successively different bodies.
Since all the perturbing effects are included in the computation of the
virtual mass, a perfect rectification is made at each computing inter-
val. This then eliminates entirely the need for numerically integrating
higher order acceleration perturbations. Thus, finally, the procedure
is like the patched conic technique in that only preintegrated conic sec-
tion solutions are pieced together.

ER 14045
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III. DIGITAL COMPUTATION

FORMULATIONAL CONSIDERATIONS

It has been truly said that numerical computation is more of an art
than a science. This Chapter in fact is an exposition of a p: imitive
form of the art practiced here to implement the concel-ts discussed in
the last Chapter in a digital computer program. Where alternative
approaches and variable mechanizations are described here, they were
tested and compared in the computer. The results are l eported in the
following Chapter.

A. VECTOR ORBITAL ELEMENTS

A number of complications and inefficiencies _culd result if the
computation scheme outlined in the preceding Chapter were implemented
in terms of the conic section equations as generally written in polar
coordinates in the p',ane of motion. The complications would arise in
the special procedures required to handle cases of zero inclination,
zero eccentricity and unity eccentricity. The principal inef¢iciency
would manifest itself in the necessity for a large number of coordinate
transformations. Each computation cycl_, would requir_ a rotational
transformation from the reference (ephelner's} frame to the instantar, eous
plane of motion, defined by the position and velocity relative to the
virtual mass, and back again.

Tile tr isformations can be eliminated entirely and the other dif- _
ficulties qinimized by using the three-dimensional vector formulation
of the two-body conic section solution. These relations will be de-
veloped here for the sake of including in this report a complete listing
of the equations required for the computation.

If both sides of the vector equation of motion for the two-body
problem: *

(Iii- 1)
r = 3

£

are cross-multiplied by r, the equation

rxr= --_ rxr = 0
results, r

*The quantities are not subscripted here for the sake of simplicity of
notation, it is to be ,,nderstood, nevertheless, that the spacecraft
motion relative to the virtual mass is implied.

ER 14045
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This can be integrated to obtain

k = r x r (III-2)

The constant of integration_"willbe called the "kepler vector" since
itobviously represents twice the areal rate. Now form the vector
product of Eq (III-2) and Eq (III-1), divided by -u:

(_'x x r1 -*
kxr=

U 3
r

d (rr_._)and hence thisIt can easily be shown that the right side is _-

equation can be integrated to yield

-_ r kxr
e = (III- 3 )r

This integration constant _" will be called the "eccentricity vector. "

The magnitude of _* is the eccentricity of the conic section and the
vector points along the major axis toward periapsis.

The equation of the conic section is easily derived from Eq (III-3)

by forming its inner product with r.

-_ -_ r _ kxr -_e.r- ...... r
r t_

Interchanging the dot and cross in the last term on the right and sub-
stituting from Eq (III-2) gives finallj

-. .. k 2
e.r - -r + _ (III-4)

Actually Eq (III-4) defines a three-dimensional surface rather than a
path. The orbit is specified as the intersection of this surface with

the plane normal to k.

The velocity r can easily be determined at any position r on a given

orbit k, e. Observe first that since k is orthogonal to r:

k &
-ff-xr

is a vector in the plane of motion, perpendicular to the velocity vector
and equal to it in magnitude. The cross product of this resulting vector

ER 14045
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by the same unit normal to the plane gives the original velocity
identically:

g ,xg: x

Substitutefor the expression in parentheses fro':nEq (Ii_-3)to obtain

k and e are completely determined in any three--dimensional
coordinate system by Eqs (III-2)and (III-3),having given the posltion

r, velocityr and central mass _. These vectors define the geometry
of the orbit just as do the classical orbital elements a, e, i, _,_. Of •
course, six elements are defined by the three components each of

k and e, but the identical satisfaction of the orthogonality condition

e.k=0

implies that, in fact, there are only five independent elements.

The behavior of the k and e orbitalelements of the spacecraft
morion relativeto the virtualmass is illustratedin Figs. 6 and 7 for
the example circumlunar trajectory of Chapter II, Section C. Recall
that, in this simple case, the motion is two-dimensional in the earth-

moon orbitalplane. Therefore, the k vector is everywhere orthogonal
to thisplane and hence itsmagnitude variation (shown in Fig. 7) is the
only significantfeature. The eccentricity vector, on the other hand,
lies in the plane and varies in both magnitude and direction. Figure 6

depicts _"as a series of arrows, emanating from the virtualmass
focal points, pointingin the indicated directions and equal in lengths
to the eccentricities appropriate to the positions.

This section is concluded with an explanation of the direct method
for computing the conic section time of flight from given initial position

r1 to final position r-*2 on a known orbit:

No derivations are given, Known results are simply expressed in terms
of the vector notation adopted here,
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Section C of this Chapter describes how to handle the inverse

problem of finding the final position r on a given orbit, with a pre-2

scribed flight time from an initial position rl:

t2
The conic section time of flight can be computed from

iVI2 _ M 1
(III-6)

t 2 - t I = oaM

In this expression, when the orbit is elliptic or hyperbolic (e # I).

M is interpreted as the mean anomaly and ¢oM as the mean angular rate.

For the parabolic case (e = i), M is taken to be the area swept out by

the radius vector as it rotates from periapsis and ¢oM the (constant)
areal rate. The value M can be represented in the algebraic form

M. = E. -@. (i= 1, 2) (III-7)
1 1 1

in all cases, When e # 1, E represents the eccentric anomaly and
@ = e sinE or e sinh E. In the hyperbolic case the sign of Mshould
be reversed; but, as will be shown later, this can be accommodated in

the sign of,.M. When e = 1, E represents the area obtained by pro-

jection of the parabolic arc normal to the major axis and %5defines the
triangular area obtained by similar projection of the radius vector to
the position defining the end of the arc. The parabolic triangular area
is signed negatively when the true anomaly is less than 90 ° so that
Eq (IH-7) is always valid.

It remains now to show how the values of E, %b, and ¢0M are computed
for the various cases.

First, some preliminary computations are defined. The in-plane
unit normal to the major axis is

-* kx e (_,# 0)
n = ke

-" -- (III-8)
-. kx r1

n = k r 1 (_= 0)
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Note _hat in the circular case the major axis is arbitrarily assumed
along the initial position vector. The length of the semi-minor axis is

k 2
b : (e# i)

(m-9)
2 (e= i)

bi= r. - k2/u
1

The semi-minor axis is infinite in the parabolic case, hence Eq (III-9b)
is written to give the reciprocal of one-half the base of the aforemen-

tioned trian_ular area (the denominator is -_'. _'by Eq (III-4)). The
p:_ojection of the radius vector orthogonal to the major axis, divided by b,
is simply

n.r.
X. = } (III-10)
l b.

1
I

These auxiliary computations now make it easy to display the neces-

sary values. First ¢oM is given by
°

A_(I - e2_, (e # i)f ,,-

;M kb

(III-ii)

k (e= I)=
.2

The first value represents the mean angular rate, the second is the areal
< 0 for hyperbolic orbits (e > 1). The valuerate. As noted earlier, tOM

of q, is given by

@i = e Xi (III-12)

in all cases. Note that whene = 0, _i = 0 (or Mi = E i) and that _iindeed

is the triangular area for e = 1 (by Eqs (III-9b) and (III-10)). Finally,
the eccentric anomaly (or parabolic arc area) E is

E i = sin-I X i (e<l)

(k2/_ • X.) 3E. = i (e = 1) (Ill-13)
i 3

E i = sinh'l Xi (e >I)
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There is no ambiguity in the hyperbolic case since the orbit is
aperiodic. This is reflected in the fact that the inverse hyperbolic
sine is a monotonically increasing function of the argument. The am-
biguity which does exist in the periodic elliptic case can be easily re-
solved. When e # 0

E.1 = principal value = PV for r.1_< a

E. - _- PV for X. > 0, r. > a I (Ill-14)

1 1 1

E. = -Tr - PV for X. < 0, r. > a
1 1 1

Whene = 0, the above test onr - a must be replaced by atest on

r I • r 2.

Note that the time can be negative in the case where e < 1 and the

cut E = _ (or -9) is crossed. If this should happen merely add 2_/_ M

to the time given by Eq (III-6).

B. NONITEt _&TED VERSUS ITERATED COMPUTATION

The characterization of the virtual mass motion as a constant-

velocity straight line and of the mass magnitude as held constant over
each computing interval is dynamically consistent with the characteri-
zation of the spacecraft relative motion as a conic section. Therefore,
an important problem concerning the computation is the determination
of a method for establishing appropriate values of the virtual mass ve-
locity and mass to hold constant over the interval.

The simplest approach, of course, is to merely take the values given
by the virtual mass equations themselves at the beginning of the s_ep.
These values can be used, much as in the classical Euler integration
scheme, to propagate the motion to the end of the interval, where new
values are discontinuously assumed consistent with the new situation.
This procedure is fast since just one computation (no iteration) is re-
quired per time interval. Unfortunately, accuracy suffers due to the
fact that initial values, rather than mean values, are used over the step.
Whereas the spacecraft trajectory itself would be continuous in this case,
perhaps the most serious failing would result from the discontinuities
in the virtual mass trajectory. The virtual mass position propagated to
the end of an interval, for the purpose of locating the spacecraft, would
not, in general, correspond to the position computed by Eq (II-3) for
the start of the next interval.
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Ifthe correct position and magnitude of the virtual mass at the end
of the intervalwere known a priori, there would be no problem what-
ever in establishingthe required average velocity or in choosing some
linearlyi_terpolatedvalue of the mass to hold constant: _'

r - r

__ ve vB
r =
v At
av

_Vav= Cl _Ve+ (1 - C 1)_vB (0 _<C 1_< 1is a specified constant)

(III-15)

Since these finalvalues are not known at the outset, but are in fact part
of the answer sought, an iterativecomputation procedure, analogous
to the modified Euler scheme, is suggested. The finalvalues r_ and

V 2
e

_v are estimated initiallyand then iterativelyimproved by computation
e

based upon the resultingspacecraft finalposition. When the difference
between successive values becomes acceptably small, the iterationcan
be discontinued and the computation can proceed to the next interval.
The better the initialestimate, naturally, the faster the convergence.
The method decided upon for study was to assume a second order varia-
tion with time in computing this firstguess.

r = rvB + v_B (At)+ r (At)2

I

V e Vav

_ve : _vB + _vB (At)+ _Vav (At)2 (III-16)

The constant terms are given by Eqs (II-3),the linear term coefficients
by Eqs (II-4). The (acceleration)coefficientsof the squared terms are
assumed to hold for this interval from the previous one. Thus, they
would be computed as

r - r - r (_t)
•. V V V
-_ e B B
r =

Vav (At)2
(III-17)

Uve - _v B - _v B (At)oo

DV =
av (At)2

,7
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afLer convergence was achieved in the preceding in rval. At the start-
ing time step, they are set to 0. Although this iterative scheme is
slightly more complicated and requires multiple looping each interval,
there will be no discontinuity in the virtual mass trajectory, and accu-
racy should be better, for a given step size, than with the simple non-
iterative approach.

C. THE COMPUTING INTERVAL

It is intuitively obvious that different computing interval sizes are
required for different l_arts of a trajectory. Large step sizes can be
used when the spacecraft is far away from a relatively constant magni-
tude and slowly moving virtual mass (such as would be the case during
the heliocentric arc of an interplanetary mission). Small increments
should be taken, however, whenever the vehicle is close to the virtual
mass (as for a trajectory grazing by a planet) or whenever a sphere-
of-influence crossing occurs and the virtual mass moves and changes
magnitude rapidly from one dominant physical body to another.

If the step size is controlled to maintain equal increments of true
anomaly in the motion relative to the virtual mass, the time increment
variation will behave qualitatively as desired. The simple formula for
converting the true anomaly increment into the corresponding time in-
terval is

2
C 2 rvs

At : k (111-18)

where k is the magnitude of k and where C2 is an input constant defining
2

the desired angular step size in radians. Multiplication of C 2 by rvs ,

of course, converts the angle into twice the area increment. Dividing
by double the instantaneous areal rate relative to the virtual mass gives
(for small steps) the time to cover this angle.

A practical difficulty could arise in attempting to use Eq (III-18) as
it is. Figure 7 shows that k vanishes at one point along the trajectory
for the in-plane case. At this point, of course, the relative motion is
directly toward or away from the virtual mass. Although k does not
vanish for more general trajectories, it still can become small enough
to cause Eq (III-18) to compute a very large time increment. This

problem can be circumvented by replacing k by rvs Vvs, the scalar

product of the position and velocity magnitudes. This then represents
a fictitious areal rate which assumes that the velocity is always normal
to the position vector and thus, in general, is larger than the true areal
rate. Substituting this into Eq (III-18) gives
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C 2 r
vs (III-19)At= V

vS
"4

as the time increment. This form can give computational difficulty

only when Vvs _ 0--a highly unlikely occurrence.

it is one thing to set the desired time increment, but the realization
of it is another matter. Since the conic section time of flight is a trans-
cendental form, it is not possible to invert it to determine in closed
form the final position corresponding to a given flight time from a
given initial position. Two alternatives are possible, depending upon
whether the basic computation philosophy is noniterative or iterative
(see Section B). In the noniterative approach, the final position is es-
timated so as to approximate the desired time. Once the estimate is
made, the desired time is disregarded and the conic section time of
flight equations are used to ascertain what time ac aally did elapse j

from r1 to the estimated _'2" The trajectory time and ephemeris time
are then updated by this true time increment in preparation for the r
next step.

The iterative procedure cannot be treated so simply, however, be-
cause the procedures for estimating and updating the final values of the -
virtual mass and for computing the average velocity all depend upon
acbieving a predetermined time increment with very high accuracy.
A double iteration could be mechanized in which the spacecraft final
position is iterated within the outer loop of the virtual mass final con-
dition iteration. Such a procedure is cumbersome and time-consuming.
It is also unnecessary if accurate initial estimates of both the space-
craft and tlae virtual mass final conditions can be made and then simul-
taneously updated within a single iteration loop. This latter course was
decided upon for the mechanization of the iterated virtual mass proce-
dure. The logical details of the technique are not of primary concern
here and, hence, are deferred until Chapters V and VI. The establish-
ment of the computation interval is the subject of interest here.

It has been shown that an accurate estimation procedure for the
spacecraft final relative position is required for both the noniterative
and the iterative approaches. Since this estimate, itself, will be re-
peatedly applied in the iterative scheme, the objective is to develop an
estimation procedure which improves with each iteration.

The spacecraft and virtual mass data are known at the beginning of
the interval. The virtual mass magnitude and velocity are given by Eqs
(II-3) and (II-4) for the noniterated case or by Eqs (III-1 5) for the iterated
case. The initial relative position and velocity and the mass, therefore,
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are triviallydetecrnined and from them, the vector orbitalelements

_, e are obtained by Eqs (III-2)and (III-3).Equation (Ill-19)gives the
desired step size,At. The finalposition F' must lie in the plane of

vs2

relative motion defined by rvs 1, rvsI and, hence, can be expressed as
a linear combination of them:

+ (Z_r) - Bavs 2 (III-20)rvs2 = B Sl Sl

The geometry is illustratedin Fig. 8 and shows that Avdetermines the
time (or true anomaly) increment and B ensures satisfactionof the orbital
equation. Once A_ is given, B is easily computed since Eq (_I-20) must
satisfyEq (III-4):

k2/Uv
U : (III-21 )

e.o +o
vs2 vs2

The question therefore is reduced to that of relating A 7 to the de-
sired At. As in the case of the virtual mass estimation procedure, a
second order variation will be assumed. Here the constant term is 0
and the linear coefficient is 1, for it must be true that A7 -_ At as At -_ 0

AT =_ t + _ (_t) 2 (III-22)

The procedure for evaluating K is similar to that used for the second
order coefficients in Eq (III-16). After the computation of the conic

section time of flight At k = t 2 - t I (from Eq (III-6)) in the preceding

iteration, that A t k value and the A 7 value used to obtain it specify the
exact _ for that case as

AT- At k
" 2 (III-23)

This value will be assumed to hold for the present iteration from the

last one. Clearly, this assumption gets better and better as & t k-* & t,

the desired time increment° In the noniterated ease _ is merely updated
to provide the best first (and only) estimate of the next interval.
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The study reported in Ref. 2 showed that, under some circumstances,
the conic section time of flight m_v be different from the true time. In
the event sucb a time bias night prove desirable in this case, the pro-

vision was m_de to causeAt k -* C 3 At by rewriting Eq (III-22) as

A,r = C 3At+ _ [C 3 _t]2 (III-24)

where C 3 is an input constant.

--_ r
a _ vs 1 J

Conic Section vs 2Orbit

[

(Ar)_vs 1

Fig. 8. Geomet_ of Spacecraft Final _elatlve Position Determination
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IV. DIGITAL COMPUTER STUDY

A. APPROACH
,41

The suitabii._ty of the virtual mass technique as a flexible integration
method for the n-body problem could be assessed only by trying some
numerical examples. Accordingly, the basic concept described in Chap-
ter II was mechanized, in conformity with the considerations of Chapter
Ill, as two separate computer programs: one a simple noniterative pro-
cedure, the other a somewhat more complicated iterative procedure.
Salient features of the flow diagrams for the two programs are sketched
in Fig. 9. Details such as special logic paths for starting the computa-
tion and tests for stopping conditions and printout have been omitted in
order to emphasize the basic principles of operation. Reference is
made on the flow diagrams to the sections of the two previous chapters
where the appropriate equations may be found. Note that the iterated
program loops through the ephemeris subroutine only once each compu-
tation interval. Since the desired time increment At is fixed and the
iteration procedure is intended to make repetitive improvement to achieve
this objective, the final time and, hence, the gravitating body data are
fixed. Improvement in the virtual mass data, therefore, is effected by t
improvement in the spacecraft final position and velocity.

The input constants provide the means by which the computations are -

controlled within the programs. C 2 sets the desired computation inter-

val size (see Section III-C). C 3 biases the Keplerian flight time for values
different from unity (see Section III-C). In the iterated program C 1

(0 < C 1 < i) linearly interpolates the virtual mass magnitude to some
value between the initial and final values (see Section III-B). The con-
stant LOOP controls the number of iterations per computing interval
according to the following:

Value of LOOP No. of iterations (afterfirstpass)

12 1
6 2
4 3
3 4
2 6
1 12

In order to properly assess the effectsof variations of the program
controls and to compare the two programs with each other, an index
to the accuracy of the solutionis necessary. The constancy of the Jacobi
integral is a necessary condition to any solution to the restricted three-
body problem and, therefore, could be used for just such an accuracy index.

f
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In addition, this case of just two gravitating bodies is the simplest n-
body problem and would serve adequately as a test of the integration
method. Therefore, the ephemeris subroutine was programmed for
the restricted three-body problem by representing two bodies in circu-
lar orbits about their common center of mass. The expression for the
Jacobi integral is classically derived in the rotating barycentric coor-
dinate system. Since all computations for the virtual mass procedure
are carried out in an inertially oriented barycentric frame, the Jacobi
constant was transformed to that reference:

cj = 2 + - ( s)2 - (Ys - - (Ys - x )rls r2s s

It was recognized that some of the computations represented by the
equations in Chapters II and III may involve differences between nearly
equal numbers. Loss of significance in such cases can be alleviated by
carrying out these computations in double precision. Rather than at-
tempt an analysis in detail to isolate those computations where increased
accuracy would be required, all computations were done in double pre-
cision on the IBM 7094 digital computer.

A circumlunar trajectory, inclined initially nearly 30 ° to the earth-
moon plane, was chosen as the principal test trajectory. The pericyn-
thion altitude of about 210 naut mi (lunar radius --938.5 naut mi) was
reached in slightly more than 70.3 hr from insertion at earth. This
trajectory is given in Chapter V as a sample problem solved by the
final version of the program, All the details, including the initial con-
ditions, the physical constants describing the earth-moon system and
the trajectory time-history, appear there.

B. RESULTS

Although a great number of exploratory studies and parametric runs
had to be made, the pertinent results can be summarized quite concisely.

As expected, the iterated program was more accurate than the simple
noniterated one. A direct comparison of the two is shown _n Fig. 10 in
terms of the Jacobi energy accuracy index. The gains controlling the

computing interval size, C 2 = 0. 0005, and the time bias, C 3, were
set to the same values for the two programs. The curve shows the
difference between the Jacobi energies at corresponding time points
on the test trajectory as computed by the two programs. This method
of presentation was chosen because, although the gains selected caused
the iterated program to compute with high accuracy, there was a small
variation of the Jacobi energy. The difference shown in the curve of
Fig. 10 shows how much worse the variation was using the noniterative
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program. The maximum difference was an appreciable 9000 (naut mi/

hr) 2 out of 7033989. 7388 (nautmi/hr) 2. As will become more apparent
in the other studies of the iterative program, the superior performance
of the more sophisticated method well justifies the slight additional
complication. Without it, the calculation of precision trajectories
would be impractical.

Restrict±.lg attention, therefore, to the ._terative program, the first
question to be resolved was that of the number of iterations required

per computing interval. With any reasonable gain C 2 on the computing
interval size, it was found that just one extra loop (after the first pass)
was sufficient to produce answers which, io at least eight significant
figures, were identical with those for more repetitions. Therefore, the
final program has been fixed to loop the first time through the computa-
tions, including an access to the ephemeris subroutine, and then just
one additional iteration (by-passing the ephemeris).

The studies of the interpolated virtual mass value and the conic sec-
tion time bias are summarized in Figs. 11 and 12. For both of these
comparisons, a base run was made with the mass interpolated at the

midpoint (C 1 = 0.5) and no time bias (C 3 = 1.0). The curve of Fig. 11

was generated as the _ime-history of the differences in the Jacobi

energy between the base run and two others in which C 1 = 0.4 and 0.6.

The incremental error buildup portrayed by this graph clearly shows
that the best mass value to use is the arithmetic mean between the initial
and final values. Similarly, the incremental error curve of Fig. 12 was

generated as deviations from the base run of two time biases of C 3 =
0. 99999 and 1. 00001. This curve shows the extreme sensitivity of the

solution accuracy to this parameter and indicates that no bias (C 3 = 1.0)
is best. On the basis of these results, the final version of the program
is coded to calculate the virtual mass magnitude as the simple average
of the end-values and to achieve an unbiased match between the desired
and the conic section time increments.

The constant C2, since it controls the computation interval size, is
the basic accuracy selector. Final comparative studies of this param-
eter were made with the other program controls set to the optimized
values as described above. The variation of the Jacobi energy with time

along the test trajectory is shown in Fig. 13 for various gains C 2. A

value of C 2 <__0.001 maintains the maximum deviation to less than 2 (naut
mi/hr) 2 out of the 7033989.7388 (naut mi/hr) 2 initial value. The discon-
tinuity in the curves at approximately 38.9 hr is due to a computational
inaccuracy which occurs as a result of the fact that the computing inter-
val spans the apocenter relative to the virtual mass. As noted, the dis-
cussion of the time of flight in Chapter III Section A, such an occurrence
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would cause the formulas to compute a large negative value for the time
of flight. The program was provided with the capability to theoretically
correct this mistaku by adding a time equal to one period of the orbit.
Unfortunately, some loss of significance occurs due to the subtraction
of two nearly equal numbers. Apparently, the resulting inaccuracy is
enough to cause the Jacobi energy variation indicated. This difficulty
should be less serious for a macaine such as the CDC 3600 than as shown
here for the IBM 7094. The former carries 20 digits in double precision
and also has automatic rounding, whereas the latter carries only 16 digits
and simply truncates.

To gain some insight into what these variations in the Jacobi energy
mean in terms of the spacecraft positional deviations, the difference_ _r

were computed between the base run with C 2 = 0. 001 and other trajec-

tories run with gain_ C 2 > 0. 001. These differences, divided by the

magnitude of the spacecraft position vector from the barycenter, are
shown plotted in Fig. 14. They show, as an example, that a gain of
C 2 = 0. 005 gives a positional displacement of &r = 0. 307 naut mi for

a total position vector distance of r = 197299.51 naut mi at 65.0 hr
(just prior to the pericynthion at 70. 338787 hr). Figure 13 shows that

this same trajectory showed a Jacobi energy variation of &Cj = 44.66
(naut mi/hr) 2 at this time.

An independent check of this Jacobi energy versus position deviation
correspondence was made by comparing the same base run with identically
the same trajectory numerically integrated by a standard procedure in an
entirely different computer program. The integration tolerance happened
to be set in that program so that the resulting solution displayed a Jacobi
energy variation at 65 hr which was very nearly the same as that noted

above (for the C 2 = 0.005 case). The positional difference between the

numerically integrated trajectory and the base run was also approximately
the same _r = 0.384 naut mi. Thus, it is concluded that the Jacobi energy
does provide a good index to accuracy and that the base run apparently is
a_, accurate solution to the problem.

Of course, the price of accuracy is computation time. The run with

gain C 2 = 0.005 calculated the trajectory in 2369 increments and took 57

sec on the computer. This time was measured for a complete problem
cycle, from the time the instruction was given to read the input data
until the program again sought data for the next problem.

Program accuracy control by means of the constant C 2 would require
some study on the part of the user to determine what value to use to ob-
tain a certain accuracy and to estimate th_ expected running time on the
computer. The problem has been simplified somewhat by utilizing some
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information obtained from a cross-plot of Fig. 14. Since the maximum

error occurs at the 70-hv point near pericynthion, a plot of C 2 versus

Ar/r at 70 hr was made as shown in Fig. 15. This curve was approxi-
mated by a second degree polynomial fit and built into the initialization
section of the program. Thus, the user can input the more intuitively
meaningful number At/r, or fractional accuracy desired at pericynthion,
and the program will internally set its own gain appropriately.
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" V. GENERAL DESCRIPTION AND USE OF THE VIRTUAL

( MASS PROGRAM FOR COMPUTING SPACE TRAJECTORIES
• "i_ 4

This chapter is intended to serve two purposes.

._ (1) It can be used, independently of the rest of this report, by
::_ the mission analyst. Usually he is not so much concerned:i

, _ about the computation process or the implementation of the
':: procedure. Instead he is more interested in what general
:;• problem is solved, what is the solution accuracy and how
_ can he use this digital computer program to calculate
t:'_.•_.,, trajectories.
f ;A

_ (,_:_ (2) It also provides a broad overview of the digital program and
_,;,# its use, uncluttered by details. Thus it serves as an intro-

duction to the trajectory analyst who may be interested in
the details given in Chapter VI.

A. GENERAL DESCRIPTION

The purpose of this contract was to investigate the feasibility of
the technique of computing space trajectories as a series of conic
section solutions relative to a moving and varying virtual mass. At "
every instant of time this virtual mass replaces the combined effects
of all the gravitating bodies upon the spacecraft. As explained in the

_ preceding chapter, this was done by testing the procedure in a digital
computer program. The simplest n-body problem, the restricted

_ three-body problem, was used for this purpose. The final version of
this FORTRAN IV source program is delivered with this report in
fulfillment of the obligations under the contract.

Although this program solves only the restricted three-body
problem, the virtual mass subroutine was formulated in completely
general form. Thus, the only changes required in the program to
make it capable of computing trajectories for more than two gravitat-
ing bodies are to replace the ephemeris and the input and output sub-
routines.

The reference coordinate system is a set of inertially oriented

axes, centered at the barycenter. The xy plane is the earth-moon
orbital plane and the initial position of the moon (and hence the earth)

is given in terms of the ephemeris time tep h, or time since the moon
!__ crossed the positive x-axis. Specification of the earth-moon distance
_, D, the angular rate _ and the ratio of moon mass to total system mass

complete the description of the gravitational environment. The total

m

ER 14045
41

1966009743-048



mass of the system (times the Universal Gravitation Constant) is com-
puted internallyin the program as

2 D3 (V- I)AUe+ _m = _

to ensure dynamical consistency of the system. The spacecraft initial
position and velocity components are specified in the reference bary-
centric coordinate system.

To permit the greatest freedom possible in the use of the program
and to scale numbers for greatest computational accuracy, all calcula-
tions within the program are carried out using d_mensionless quantities.
Thus, no units are specified (except that_ is presumed given in degrees
per unit time) and the user may input tilenecessary data in any system

-1 .

of units he chooses. The value of _ Is chosen as the unit of time and

D as the unit of length. Thus, conversion factors

_-I = time

D = length

D = velocity

2 D 3 = mass times Universal Gravitation Constant

3 D 3 : mass rate

etc.

are used to nondimensionalize input data and to convert din,ensionless
computed values to output data in the same system of units as the in-
put.

The program has been discussed here in terms of the earth-moon
system but, of course, is applicable to any two bodies (e.g., sun and
a planet). The input constants determine the detailsof the system.
Itis only necessary to remember that the ephemeris time gives the
time elapsed since the body designated by mass ratio _ (0< # < i)
crossed the x-axis.

As described in Chapte:- IV, Section B, the accuracy of the solu-
tionis controlled by an input number Ar/r. This quantity represents
the allowable error (nondimensionalized by D) in spacecraft position
at the pericynthion point for an earth-moon trajectory. The program
automatically converts thisnumber to an equivalent gain controlling
the computing interval size to maintain roughly equal steps in true
anomaly relative to the virtual mass (see Chapter III,Section C).
The gain correspondence was established for the lunar trajectory and
itis not known at present what performance could be expected for an
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interplanetary trajectory (i, e., one which does not pass close to the
large body).

The computing interval is adjusted as a print time is approached
to cause the printout to occur exactly at a specified time increment.
A similar adjustment is made whenever a major axis (pericenter or
ap'_center) crossing is imminent. The simp;e logic for this latter
adjustment is not adequate for all cases. The pericenter crossings
are picked up rather consistently except when such a crossing occurs
shortly after the initial point (this is tl • case for the test trajectory
selected) and a very loose gain is used. In this situation the program
steps over this region before it has a chance to anticipate it. The
apocenter crossing (which occurs at about 38.9 hr for the test traject-
ory) is only rarely caught by the routine provided.

Three stopping conditions are specified as input data, and the
problem will terminate on whichever condition is met first. The con-
ditions are a maximum allowable trajectory time and an impact with
either of the two gravitating bodies. The radii of the two bodies must
be given.

B. INPUT AND OUTPUT .

A series of from 2 to 7 cards (I to 6 data cards and 1 problem
card) is used to input the data for a given problem. A number of
problems may be run consecutively by ,nputting a sequence of such
series of cards. Formats for the 7 cards are given below. The con-
trol word on each card begins in Column 1 and must appear exactly
as specified. The variables begin in the columns indicated and must
be punched according to the standard FORTRAN formats supplied
(D18.0 indicates a double precision numeric field of 18 columns and
I 1 indicates an integer field of 1 column).

Data Card l--

Col. i Col. 9(Dl8.0) Col. 27(D18.0) Col. 45(D18.0) Col. 63(D18.0)

POSITION t x
s Ys Zs

Data Card 2--

Col. 1 Col. 9(D18.0) Col. 27(D18.0) Col. 45(D18.0)

VELOCITY _s _'s Zs
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Data Card 3--

Col. l Coi. 9(D18.0) Coi. 27(D18.0) Coi. 45(D18.0) Coi. 63(D18.0)

EFEMERIS teph _ D

Data Card 4--

Col. 1 Col. 9 (DI8.0)

ACCURACY _.r/r

Data Card 5--

Col. i Col. 9(DlS. 0) Col. 27(D18.0) Col. 45(D18.0)

STOP tf rls F r2s F

Data Card 6--

Col. 1 Coi. 9(D18.0) Coi.42(II) Coi. 43(Ii) Coi. 44(Ii)

PRINT At IPRT I IPRT2 IPRT3
P

IPRT1, IPRT2, and IPRT3 are used to indicate printout option requests..
Ordinarily (and in case Columns 42 to 44 of this card are left blank),
only the standard block of printout is given (see discussion below on
output). However, any or all of the optional printout blocks may be
obtained at each print interval by using the integers 1, 2, and 3 in
Columns 42 to 44. A 1 appearing anywhere in these columns would
request the first optional block in addition to the standard block of
output. A 2 would request the second optional block, and a 3, the
third. Thus, any combination of the integers 1, 2, and 3 may appear
in any of the three columns to request any combination of the 3 optional
blocks in addition to the standard block.

Problem Card--

Col. 1 Col. 9 (D18.0)

PROBLEM NPROB

NPROB is the problem number and will be truncated to an integer
before being stored by the program. This number in used to identify
the output.
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To make the program as convenient to use as possible, certain
flexibilities of the input have been incorporated in the program:

(1) For a_y problem, the six data cards may appear in any '
order. The problem card, however, must always appear
last.

(2) On the first problem of a job, the data cards PRINT and
ACCURACY may be omitted. If the PRINT card is omitted,

A¥ is assumed to be 5., and only the standard block of out-
put is given. If the ACCURACY card is omitted, Ar/r is
assumed to be 1. D-7.

(3) On any problem after the first problem of a job, any of the
6 data cards may be omitted. For those cards which do
not appear in a given problem, the variables used in the
first problem are always assumed. The problem card can -"
never be omitted and must always be the last input card for
a problem.

!

(4) Any of the variable fields, if left blank, are assumed to be
0. DO.

For each problem, the input data are printed out as the first page
of output. The sequence of fields corresponds to those on the input
cards, but the cards are ordered in a standard sequence and any
assumed cards (by omission assumed same as first problem) are also
printed.

Subsequent pages of output for each problem give the standard block
of output, follo_ved by any optional blocks requested, at each printing
interval. The optional blocks are always ordered 1, 2, and 3 if they
appear. (See the PRINT data card for the method of requesting op-
tional blocks of output. ) All variables are dimensioned in the same
units an the input.

Standard output block (option 0)

TRAJECTORY TIME = t

SPACECRAFT INERTIAL TRAJECTORY

POSITION ..... x s Ys Zs rs

VELOCITY .... Xs Ys Zs rs

Optional output block 1

EPHEMERIS TIME = tep h
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EPttEMERIS DATA

POSITION OF EARTH .... x E YE ZE rE

VELICITY OF EARTH .... _E YE iN _E

POSITION OF MOON .... x M Y M z M r M

VELOCITY OF MOON .... :_M YM _M )M

Optional output block 2

SPACECRAFT RELATIVE TRAJECTORIES
z

POSITION REL TO EARTH .... XEs YEs .Es rEs

VELOCITY REL TO EARTH .... XEs YEs ZEs _'Es

POSITION REL TO MOON .... x. Ms Y.Ms ZMs rMs

VELOCITY REL TO MOON .... XMs Y Ms ZMs rMs

Optional output block 3

VIRTUAL MASS DATA

VIRTUAL MASS POSITION ........ x v Yv Zv rv

VIRTUAL MASS VELOCITY ....... _v Yv _v _v

SPACECRAFT POS REL TO VI_.... Xvs Yvs Zvs rvs

SPACECRAFT VEL REL TO VM .... Xvs Yvs Zvs l"vs
KEPLER (ANG MOM. ) VECTOR .... k k k k

x y z
ECCENTRICITY VECTOR ......... e e e e

x y z

VM MAGN = /_v

VM MAGN RATE = _v

C. SAMPLE PROBLEM

The foregoing descrip,ions of certain features of the program and
of the input and output formats are best illustrated by an example.
This section, therefore, lists the output of a sample problem. As
noted in Chapter IV, Section A, this example is the problem used as
a reference for the digital computer study reported there.

Observe that all output options were requested. Distances are ex-
pressed in terms of nautical miles and times are in hours. In addition
to the printout at the requested 5-hr increments, there are also outputs
at t = 0.002900911 • • ", t = 70. 338748577 and t = 70. 4000645948 hr.
The first o,.curred-" because of the fact that the trajectory insertion
was made with a slightly negative flight path angle. Since the virtual
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mass almost exactly coincides with the location of the earth, periapsis
relative to the fictitiousbody was achieved almost immediately. The
second time corresponds to the periapsis passage at pericynthion.
Both of these occurrences were preceded by the notation "MAJOIt AXIS
CROSSING" in tile printout. The last time point was printed as one of
the stopping conditions (maximum time t = 70.4 hr) was met.

For the ACCURACY used in this example, the Jacobi energy varia-

tion was less than 2 parts out of Cj = 7033989.7 (naut mi/hr) 2.

J

m

I
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VI. DETAILS OF THE COMPUTER PROGRAM

The detailed derivations of all the equations have been given in
Chapters II and III. It is the purpose of this chapter, therefore,
merely to facilitate the thorough understanding of how these equations
have been implemented in the digital computer program, the FORTRAN
listing of which appears in Section C of this chapter.

A. FLOW DIAGRAMS

There are only two areas concerned with the basic computation
procedure where the logic becomes at all involved. These are the
MAIN program structure itself and the time of flight calculation with-
in the subroutine VECTOR. The other computational subroutines are
straightforward procedures for evaluating the equations as derived.
The logic is somewhat complicated within the INPUT and PRINT sub-
routines to provide the very flexible operational features described in
Chapter V, Section B. These subroutines, however, are not essential
to the basic computational procedure of the program and hence will not I
be flow diagrammed here. Flow diagrams for the two sections men-
tioned above (MAIN and VECTOR) are shown in Figs. 16 and 17, re-
spectively, with the equations written in the algebraic notation intro-
duced earlier. The numbers appearing in the left-hand margins of the
blocks are external formula numbers and can be correlated directly
with the FORTRAN listing of the program in .Section C. The titles
appearing above some of the blocks correspond with the comments in
the listings.

In the MAIN program sketched in Fig. 16, the indicated subroutines
are as follows:

Subroutine De s eription .,

INPUT In conjunction with other subroutines (DINPT, SPACE
(LINES), NEWPGE) and with BLOCK DATA, reads in
data, performs conversions and initialization calcula-
tions, and prints out the input data. Sets ITRAT = 3,
KOUNT -- i.

EPHEI_I Computes the position and velocity components of two
gravitating bodies (in circular orbits) from the known

ephemeris time, teph o

VMASS Computes the position, magnitude, velocity and magni-
tude rate of tl_e virtual mass for known positions and
velocities of the spacecraft and gravitating bodies of
known masses.
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I r,cA_,NP_.r,

131c,_,,_l
IIT_T__h

I _ .- • • = 0.5fi_VB +l_Ve)

7 "" e _'vB _vl $ (At) _v B _'v "av av Ve
_Vav At 2

I .. _o-_ _. (_')
: x?

_Vav At 2 rvsB rvs e rvsB = rsB ray

WRITE: STOPPING ....
Contlnue CONDITION --EXCEEDED |-

MAXIMUM TRAJECTORY TIME I I

I ] WRITE: STOPPING

Continue CONDITION-- IMPACTED

_r
EARTH

Stop I

i'°']'_:'_"_- _ /
I WHITE: STOPPINGContinue CONDITION- -IMPACTED

MOON

DO Not Pr_n_.

Stop I KOUNT_ _

Fig. 16. Flow Diagram of MAI_ Program
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Subroutine Description

VECTOR Calculates the vector orbital elements k, e, computes
the spacecraft final position on the orbit to accurately
approximate the desired time interval and then com-
putes the ccnic section time of flight.

ESTMT Updates final values of preceding computing interval to
serve as initial values for new step (sets ITRAT = l),
determines desired size of time increment on basis of

modified true anomaly, major axis crossing or reques-
ted print time (sets KOUNT = 1 or 0 depending upon
whether regular print is indicated or not), and esti-
mates the final position and magnitude of the virtual
mass,

PRINT In conjmction with suoroutines SPACE (LINES) and
NEWPGE, performs output conversions and prints
out the requested data.

The fixed-point variables ITRAT and KOUNT provide the program
logic controls according to: c

Variable Value Action

ITRAT 1 First pass through computation
cycle (including ephemeris)

ITRAT 2 Second and last pass through cycle
(excluding ephemeris)

IT RAT 3 Initialization flag

KOUNT - 1 Stopping flag

KOUNT 0 Continue normal computation

KOUNT 1 Print flag

The subroutine VECTOR, shown in Fig. 17, contains two blocks
with stars beneath the external formula numbers. This is intended to
indicate that the details of the internal logic are not shown for the sake
of brevity. In block 510, there are a number of tests to ensure that
the argument of the arc sine does not exceed 1. by more than a speci-
fied tolerance for the elliptic case. If it does, a stopping condition
(KOUNT = -1) is flagged, a return is made to the MAIN program and
the logic paths will then terminate the problem. In addition, tests in
the listing are not shown for proper quadrant determinations. These
tests are straightforward implementations of the procedures described
in Chapter III, Section A. Block 520 merely includes some logic to
handle the special circumstance where the apocenter fo_ the elliptic
case is crossed and the uncorrected equations give a large negative
flight time. This, too, is discussed in Chapter III, Section A.
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B. ARRAY NOTATION

A glance at the FORTRAN listing in the following section reveals
that nearly all the floating point variables have been written in array "
notation. This makes the job of following the. listing all the more diffi-
cult. This difficulty is lessened considerably _.hrough the aid "_f Tables
I and II in this section. These tables relate the locations in the F (I, J}
and V (I, J) arrays to the corresponding algebraic variables--a set of
equivalence statements as it were. This slight increase in complexity
is deemed well justified on the basis of the conciseness of formulation
it affords. With the establishment of appropriate DO loops, all three
components of .m any of the vector expressions can be evaluated by
single FORTRAN statements which are essentially identical with the
standard vector forms. A testament to the compactness of the ',-asic
program is given in the fact that, without the elaborate input and out-
put provisions, the program easily fits in an IBM 1620 computer.

Note that many of the locations in the V (I, J) array find multiple
use throughout the program. No attempt h_s been made to optimize
the arrangements and it is quite obvious that more efficient schemes
are possible. Such an optimization of the program, though net of ira- t
mediate interest here, would be required for meet efficient machine
coding for a computer onboard a spacecraft.

Note further thai, although the F (I, J) array appears as an 8 x 4
matrix in Table II for the simple restricted three-body problem, it is
dimensioned in the program as F (80, 4). Thus, it car, accommodate
as maI,y many as twenty gravitating bodies with no change in that part
of the program. As mentioned earlier, the subroutine VMASS is also
completely general. The DO loops have been established to increment
by 4 to the final value

NBODY = 4* NBODY -3

where NBODY on the right is stipulated as the number of gravitating
bodies. In this program, NBODY = 2 is coded in the INPUT section,
but that is the only statement which would have to be changed to consider
more than two attractive masses.
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TABI,E I

V d, J) Array

I I 2 3 4 5 6 7

(x ) , (Yse) , . w(deg/t), _(rad/t) D g, -_

(te)dim'tB se XsB Ys B (Zs: , zsBdim dim dim

x z t F (rlSF)dlm, rls F (r2s) ,r2sFtc Se Yse Se (tF)dim' F dimt
3 " teph B (Xs) ' " (Ys e) '' (Zs) , " (Atp) d Atp C 2(tephc)dL n e dim xsB dim ySB e dim zsB n"

Ar _D

4 tephe × Se Yse Zs e r (velocity)

_2D2
5 (_v) ' (Xv) ' " (Yv) ' " (Zv) , z v _D 2 1 -_

e dim _VB e dim xvB e dim 5 CB e dt_ 13 (area rate) (velocity) 2

_:D3 3 D 3
Mx, x v M ,M , 7 v (mass) (masa rate) _¢ , Z_6 _v e e y Yvu z e

7 (_ve)di m' " (Xv) ' " (Yv) ' YvB tZv ' ' " &£k &t lav_VB e dim xvB c dhn e dim zvB ; average

8 " Mx, -: My, IVlz, z v (At) 2 B, _M
Uv e "v e "v e I "Vaverage

-- i -- --)

9 I rvs B XvsB Y v,_ ZvsB XvsB' (avse) ',rsB' (avs) Zvs B' (avse)
• x e y z

10 I rvs e Xvs e Yvs e Zvs e x v , x y_ , x v z , z vavg Vavg avg avg Vavg avg

• _ _- ,, • .
11 I Vvs B Xvs B Yvs B xs B vSB, YVSB, ny ZvsB, n z

z z
• Xvs e Yvs e . vs e Yvs e vse

12 Xvse, ex+-_----- Yvse, ey+ -_ z , e L"s, e *-r, _ Ms' ey+_---- ez+ r
VSe VSe Vse Z FVS O < v'V'e VSe VSe

"" e _ I)1/2 k213 tp %tMA 1. e 2 ( I1. - e e
_Vavg

2
14 e e e ,, e e, e cos e, sin (re), e z

exe Ye Ze Xe "-"' 3e 'c

15 (k)dkn (kx)dim (ky)dil n (kz)di m bB ' XB EB a - rvsp,; or
i "'_

vs B vs B

k kx, k 2 be, ky, E e kz. a - ; or16 k k x ky z e' rvse

xe 7 • 7vs e vs H
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TABLE II

F (I,J) Array

i_ 1 2 3 4

1 x 1 Yl Zl _1

• . . 3V
ls

2 x 1 Y 1 z 1 2 z
rls

3 Xls Yls Zls rls

• ' ' _1
4 Xls Yls Zls 3r.

1s

5 x2 . Y2 z2 _2 -

. . . 3V2s
6 x 2 Y2 z2 2 _'

r2 s

7 X2s Y2s Z2s V2s

• " ' _2
8 X2s Y2s Z2s 3

r2 s

I

1
i

1966009743-080



I

i

BLANK PAGE

O

] itlt in Hf ttt | i

1966009743-081



I

C. FORTRAN IV LISTING OF PROGRAM

$1BFTC MAIN M94/2,X_?

COMMON /COM/ V, F, PI, RAD, Vl

DOUBLE PRECISION. V(16,?),F(8Oi4),PI,RAD,VI (16)
........ COMM_ON /COM/ iTRAT,KOUNT

COMMON /COM/ NBODYI _ NBODY

COMMON /COM/ IPR_T(4), IPRTI(4L_.
COMMON /COM/ KL, IPG, LINCT, LINPG[

_ COMMON /COMZ_._BLO_E.
I CALL INPUT

.... 2 CALL EPHEM

3 CALL VMASS

IF(ITRAT ,CO, I) GO TO 4

IF(ITRAT ,EQ, 2) GO TO 7

C INITIALIZATION OF VIRTUAL MASS-DEPENDENT VALUES

V(?,7) = V(6,1)

............ DO_ 600 J=2,4
V(lO,J+3)=V(eiJ)

600 VIII,J}=V(12,J) _.--

. _..........V(gjI.}__V(IO,I )

V(8,5)=I,

............_-(5 LI_v c6 • I )

] GO TO 9
.......__!IR_!_.: e
C VIRTUAL MASS AVERAGE MAGNITUDE AND VELOCITY

DO 390 J=214

--V-(40_J eJ)-VtS_-I))/V(T,6)
390 V(ll,J)=V(3_J)-V(IOqJ+3)

..... 9 _CALL__ECID-R

IF(KOUNT ,LT, O) GO TO I0 ,
IF(ITRAT ,EQ, I) GO TO 2

• - " IF(ITRAT ,EOo 2) GO TO 3
C VIRTUAL MASS AVERAGE ACCELERATIONS

? V(B,6)=(V(6,1)-V(5, I)-V(?,I)*V(7,6))/V(815)
DO 340 J=214

340 V(IOqJ+3)=(V(6,J)-V(SIJ)-V(TIJ)*V(?,6))/V(BIS)
C TEST FOR STOPPING CONDITIONS

400 IF (V(2t5) ,GT_ V(211)) GO TO 401
CALL SPACE (3)

WRITE (614000)
4000 FORMAT (//53H STOPPING CONDITION--EXCEEDED MAXIMUM TRAJECTORY TIME

$)
GO TO 995

- 4bl" IF(F'(3,4) ,GT, V(2,6)) GO TO 402 ................
CALL SPACE (3}
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W_ITE (614010)

4010 FOqMAT (//35H STOPPING CDhIDITION--IMpACTED EARTH)

GO TO 995

402 IF (F(7,4) ,GTI V(2,7)) GO TO 403 .. . ..........

CALL SPACE (3)

WRITE (5,4020)

4020 FORMAT (//35H STOPPING CONDITION--IMpACTED MOON )
GO TO 995

403 CONTINUE

IF(KOUNT ,EQ, O) GO TO II

KOUNT = 0

I0 CALL PRINT

IF(KOUNT ,LT, O) GO TO I

11 CALL ESTMT

GO TO 5

995 KOUNT=-I

GO TO 10
END
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• IBFTCINP - -----:------:M94/2oXR-V
SqBROUTINE INPUT
COMMON /COM/ V, F, PI, RAD, VI

__ DOUBLEI_PRECISiON V(16,7),FIBO,4),PI,RAD,VI (16)
COMMON /COM/ ITRAT,KOUNT

COMMON /COM/ NBODYI, NBODY

COMMON /COM/ IPRT(4), IPRTI (4)

COMMON /COM/ KL, ........ IPG, LINCT, .....LINPGE ...........

COMMON /COM/ NBLOCK

.. COMMQN._/GCDIN/ ICARD(14)
DIMENSION INCHK(6),FMT(2),CRDTYP(2,6),APRT(4),AAPRT(2,4),IX(3)

DIMENSION NBLK(4)

DOUBLE PRECISION WD(16)

EQUIVALENCE lWPD,WD(1)}

DATA INCHK /U,I_I, 1,0,! /

DATA NBLK /10,11,9,12 /

DATA FMT(1) /12H(A24,4D24,0)/

DATA CRDTYP (1,1) /12HPRINT /

DATA CRDTYP (1,2) /I2HPOSITION /

DATA CRDTYP (i,3} /12HVELOCITY /
..... [

DATA CRDTYP (t,4) /I2HEFEMERIS /

DATA CRDTYP (i,5) /12HACCURACY /

DATA CRDTYP (I,6) /I2HSTOP /

DATA AAPRT /6H ,6H ,
$ 6H ,6H I ,

$ 6H ,6H 3 /

DATA INER# /0/

DATA-P_INT / 6HPRINT /

DATA POSITI / 6HPOSITI /

DATA VELOCI- / 6HVELOCI /

DATA EFEMER / 6HEFEMER /

DATA ACCURA / 6HACCURA /

DATA STOP / 6HSTOP /
DATA PROBLE / 6HPROBLE /
DATA IENTRY /0/

IPG=O

KL=-77777

1 DO I0 I=I,{6

DO I0 J=l,7

I0 V(I,J)=O,

DO 20 I=I,80

DO 20 J=l,4
20 F( I,J)=O,

V( 3,5):VI(I)

V( 1,1)=VI(2)

V( 1,2)=VI(3)

V( 1,3)=VI(4)

V( 1,4)=VI(5)

V( 3,2)=VI(6}

#
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V( 3,3)=VI(7)

V( 3,4)=VI(8}

-V(" 3, l)--Vl(9) ..................

V( 1,5)=VI(IO)

V( 1,6)=VI(II)

V( 1,7)=Vl f12)

V( 4,5)=VI(13)

V( 2,5)=VI(14)

V( 2,6)=VI(15) ...........

V( 2,7)=VI(16)

DO 30 I=I,4

30 IPRT(1)=IPRTI(I)

100 CALL DINPT (5,NOUT-,FMT4WD)

IF(WRD,EQ,PRINT ) GO TQ,_IIIO___ ..................

IF(WRD,EQ,POSITI) GO TO 120

IF(WRD,EQ,VELOCI) GO TO 130

IF(WRD,EQ,EFE-MER) GO TO 140 ..............

IF(WRD,EQ,_CCURA) GO TO 150

IF(WRD,EQ.STOP )- GO--YO 160 .........

IF(WRD,EQ,PROBLE) GO TO I?0

GO TO 500

I10 CONTINUE

V(3,5)=WD(2)
BACKSPACE 5
'READ (5,111iIX ..........................................

Ill FORMAT (41X311)

DO I13 I=2,4
I13 IP#T(1)=O

DO ! 12 "II_l;3 ...............................................

ISUB=IX(1)

IF (ISuB.EQ-,-b}-GO TO 112 .....................

IP_T(ISUB+I)=I

I 12 CoNTIN-UE ............
INCHK( 1)=0
GO TO 100

120 CONTINUE
V(I,I)=WD(2)

V(I,2)=WD(3)

V(I,3)=WD(4)

V(I,4)=WO(5)

INCHK(2)=O
GO TO lO0

130 CONTINUE

V(3,2)=WD(2)
V(3,3)=WD(3)
V(3,4)=WD(4)
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............ /

INCHK(3)=O
GO TO I00

140 CONTINUE

V(3,1 )=WD(2)

V(1,5)=WD(3)
V(lo6)=WD(4)
V(I_7)=WD(5)
INCHK(4)=O
GO TO 100

150 CONTINUE

V(4,5)=WD(2)
INCHK(5)=C
GO TO tO0

160 CONTINUE
V(2,5)=WD(2)
V(2,6)=WD(3)
V(2,7)=WD(4)
INCHK(6)=0
GO TO |00

l?O CONTINUE
KLT=WD(2) I

GO TO 600
500 IF (INERR.NE,1) CALL NEWPGE

CALL SPACE (5)

WRITE (6,501)ICARD
501 FORMAT (/56H AN ERROR HAS BEEN DETECTED READING THE FOLLOWING CARD

$--/10X,13A6_A2/18H EXECUTION DELETED/iH )
INERR=I

GO TO 100

600 IF (IENTRY,NE,02 GO TO 650 ..................... ,,

DO 601 I=I,6

601 IF (INCH_IJLtNEtQ) GO TO 602 ...........

GO TO 649
602 CALL NEWPGE ......

WRITE (6,604)

604 FORMAT (/91H THE FOLLOWING REQUIRED CARD TYPES WE__RRE NOT_ IN__PUT.QN..T

SHE FIFIST PROBLEM -- EXECUTION DELETED)

DO 605....[_lt6
IF (INCHK(I),EQ,O) GO TO 605

WRITE .(.6t606) (CRDTYP(Jo_),J=I,2)
606 FORMAT (lOX,2A6)
605 CONTINUE .......................

INERR=I
649 IENTRY=I

DO 610 I=1,4

610 IPRTI(1)=IPRT(1)

?,
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I I

VI( I =V13,5)

VI ( 2 =V(I* I)

Vll 3 =V(I*2)

VI{ 4 =V(I13)

Vll 5 =V1144)

Vl( 6 =V(3,2)
VI( 7 =V(3_3)

VI( 8 =V(_-_'_,_)
VI( 9 =V(3,1)

VI( I0 =V(liB)
vI(iI =v(i,6) .....
VI( 12 =V(1,7)

VI(I3 =V(4,5)

VI(14)=V(2,5)
VI(15)=V(2,6)

Vl(16)=V(2,7)
650 IF (INERR.NE.O)- GO TO 100 ...........

NBODY=NBODYI
NBLOCK=O

DO 660 I=I,4

660 IF (IPRT(I).NEI-O)-_L LOCK=NBLOCK+NBLK(I) .................
CALL NEWPGE
KL=KLT

DO 651 i=I,4
..........................................

J=IPRT( I )+1

651 APRT(1)=AAP_T(Jil)

WRITE (6,652) V(3,5),

$ APRTIV(1,1),(V(1,J),J=2,4) i(V(31J),J=21_)i

$ V(3, I),XV(1,J),J=5,7),V(4,5),(VI2,J),J=5*?)tKL
652 FORMAT (12H PRINT 1PD20_I1_6X4A6/

$ 12H p6g-i-T ION 4D20. | I/ .........

$ 12H VELOCITY 3D20.11/_. +

$ 12H EFEMERIS 4D20.II/

$ 12H ACCURACY D20.11/

$ 12H STOP 3D20.II/

$ 12H PROBLEM 15)

CALL NEWPGE

C DIMENSIONAL CONVERSION FACTORS

V(IIS)=V(I,5)/RAD .....

V(4,7)=V(1,5)_V(li6)
V(5,5)=V(4,7)_V(1,6}
V(5,6)=V(5,B)_V(1,5)
V(6,5)=V(5_6)*V(1,6)
V(6,6)=V(615)_V(115)
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C EPHEMERIS DATA

V(1,7)=-V(1,7) ...........

V(5,?)=l,+V(1,7)

F(1_4)=V(5_7)

F(5_4)=-V(IQ?}

NBODY = 2

NBODY=4*NBODY L

C NONDIMENSIONALIZATION

DO 50 J=2t3

V(J_5)=V(Jo5)_V(I*5)

50 V(2tJ+4)=V(2_J+4)/V(I*6)

V(2,1)=V(I,I)*V(I_5)

V(4,1)=V(3_I)*V(Io5)

DO 51 J=2,4

V(2,J)=V(1,J)/V(1,6)

51 V(4,J)=V(3,J)/V(4,7)

C INITIALIZATION OF M-ISCELANEOUS VALUES

V(3,6)=DEXP(1,t3756474179255 + ,509713741462307*DLCG(V(4,5))

$ +,14560-181279278D-2 * DLOG(V(4,5))**2 )

ITRAT = 3 I
KOUNT = i ..............

V(13,3)=V(2t 1)+V(3tS)

RETURN

END

il _p
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$1BFTC EPH XR?,M94/2
SUBROUTINE EPHEM

C']MMON /COM/ V, F, Pl, RAD, Vl

_DUBLE PRECISION V(I6,?),F(80,4),PI,RADoVI,(16) .........

COMMON /COM/ ITPAT,KOUNT

COMMON /COM/ NBQ_I, NBODY ..................
COMMON /COM/ IPRT(4), IPRTI(4)

COMMON /COM/ KL9 ..........IPG, LINCT_ __J.]NP_ ..............

COMMON /COM/ NBLOCK

V(14,?I=#SIN12_14,1) ) ..............
V(14t6)=DCOS(V(4tl I )

O0 I0! I=1t514 ......................
DO I00 J=l,2

100 F(I,J)=V(|,7)*.V__I_..tJ+5) .....
F(I+I,I)=-F(I,2)

101 F(I+I,2)=F(I,I )

RETURN

END
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$1BFTC VMS M94/2,X_7

SUBROUTINE VMASS .......

COMMON /COM/ V, F, Pl, RED, VI .-

DOUBLE PRECISION VI16,?I,FIB0_4) _PI_RAD,VI(16)
COMMO_ /COM/-ITRA-oKOUNT

COMMOPI /COM/ NBODYI, NBODY
COMMON /COM/ IPRT(4) o IP_TI(4)
COMMON /COM/ KL, IPG, LINCT, LINPGE

COMMON /COM/ NBLOCK

C VIRTUAL. MASS POSITION AND MAGNITUDE

V(12,5}=O,

DO 201 I=ItNBODYt4

DO 200 J=Io3

200 F(I+2,J)=V(2oJ+I)-F(IqJ)

F(I+2,4)=DsQRT(Fi-I+2,I)**2+F(I+2,2)**2+F(I+2,3}*'2)

F(I+3,4)=F(I,4)/F(I _2,4)*'3

201 v(I2,5)=v(12,B)-+F(I+3,4)

DO 203 J=1,3
V(6,d+l)=O,

DO 202 I=I,NBODY,4
202 V(6tJ+I)=V(6,J+I)+F(I+3_4)_F(I,J)

V(6,J+I)=V(6,J+I)/V(12_5)

203 V(IO,J+I)=V(2,J+-I)-V(6eJ+I)

V(IO,I)=DSQRT(V(IOo2}_*2+V(IO_3)w_2+V(IOq4)_2) "

V(6,1)=V(IO,1)_3_V(1205)

C VIRTUAL MASS VELOCATY AND MAGNITUDE RATE

V(12,6)=0,

DO 301 I=I,NBODY,4

DO 300 O&i,3 ........
300 F(I+3,J)=V(4,J+I)_F(I+I4J)

F(I+I,4)=3,_(F(I+2_I)WF(I+3,1)+F(I+2,2)_F(I+3t2)+F(I+2,3)_F(I+3-3)

1)/F(I+2q4)*_2

301 V(12,6)=V(12,6)-F-(I+Io4)_F(I+3t4} \
DO 303 J=I,3

V(8_J+I)=O,

DO 302 I=loNBODY_4

302 V(8,J+I)=v(SqJ+I)+F(I+3,4}_(F(I+IqJ)-F(ItJ)WF(I+I,_)}

V(8,J+I)=(V(8, J+I)-V(6,J+I)_V(12,6))/V(12oS)

303 V(12,J+I)=V(4tJ+I)'_V(SeJ+I)

I}/V(IO,I)_+V(I_,_)/V(I_,5))

RETURN

END

.........................

#,
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• IBFTC VTR XR7,M94/2

SUBROUTINE VECTOR

COMMON /COM/ V, F, Pl, RAD, Vl

DOUBLE PRECISION V(16,7),FI80,4),P_,RAD,VIII61 .......................

COM_ION /COM/ ITRAT,KOUNT

COMMON /COM/ NBODY[_ .... NBODY ...................

COMMON /COM/ IPRT(4), IPRTI (4)

COMMON /COM/ KL, II IPG, LINCTt LINPG_E .......

COMMON /COM/ NBLOCK

C VECTOR ORBITAL ELEMENTS ............... ............

DO 401 J=2,4

DO 400 I=9,11,2 .........................

400 V(l,J+3)=V(I,J)

401 V(16,J)=V(9,J+l}*V(ll_J+2)-V(g,J+2)*V(lloJ+l__)

DO 403 J=2,4

DO 402 I=11,16,5..............................

402 VII,J+3)=V(I,J)

403 V(14,J)=-V(9,J)/V(9_t}-(V(16,J+l)*V(lI,J+2)-VI16,J+2)*V( lloJ+l))/V

I(7,7)

DO 404 I=14,16,2

V(l,5):V(l,a)*_a+V(I,3)_a+V(I,4)**2

404 V( I, I )=DSQgT(V(I,5) ) ......

V(13,5)=I,-V(14,5)

V(13,6)=DSQRT(DABS(V(13,5)))

V( 13,7)=V( 16,5)/V(7,7}

IF (ITRAT,EO,3) RETURN

C SPACECRAFT FINAL POS-iTION AND VELOCITY

V(6,7)=V(7,6)+V(7,6)*V(7,6)*V(6,7)

DO 410 J=2,4

410 V(9,J+3)=V(9,J)+V(6,7)*V(l 1,J)

V(8,7)=V(13,7)/(V(14,2)wV(9,5)+V( 14,3)wV(gQ6)+V(14,4)wV(9,7)+DSQRT

DO 411 J=_,4

411 V(IO,J)=V(B,7)*V(9,J+3)

V(lO,1)=DSQRT(V(IO,2)**2+V(lO,3)**2+V(lO,4)**2)

DO 414 J=2,4

414 V(Ia,J)=V(14,J)+V(IO,J)/V(IO,I)

DO 413 J=2,4

DO 41a ........................
412 V(I,J+3)=V(I,J)

V(Ia,J)=(V(16,J+I)*V(12,J+2)-V(16,J+a)*V(Ia,J+I))/V(13,----#) ..............

V(2,J}=V(tO,J)+V(6,_J)

413 V(4,J)=V(12,J)+V(lO,J+3)

C KEPLERIAI4 TIME OF FLIGHT

IF(VII4,1) ,NE, 0,) GO TO 501

500 M=9

GO TO 502

501 M:I4

502 NN:I6-M

D0 504 J:2,4
O0 503 I=M,16,NN .....................

ER 14045
82

1966009743-091



l

"--"

503 V(I.J+3)=V(I,J)

504 V¢II.J+3)=(V(16.J+I)*V(M,J+2)-V(M,J+I)*V(16,J+2i)/(VIIS, I)*V(M.i)) /

DO 517 I=9,10

............................

IFlV(13,51 oEQ, C-) GO TO 506
505 VII+CQ5)=V( 13,7)/V(13.6)

GO ,0 507

506 V( I+6,5)=2./(V(I,!_-V( 13,71 )
507 V(l+6,5):(V(ll,5)*Vll,2)+V(ll,6)*Vll,3)+V(ll,?)*V(i,4)-)/V(_+6,5)

IF(VII3,5)) 508,509_510
508 VII+6,6)=DLOG(V(I+6,5)+DSQRTIV(I+6,5)**2+I.))

GO TO 517

509 V(l+6,6)=V(14,1)**2*lV( 13,?)*VI I+6,5))*'3/3,

GO TO 517 ..........
510 IFIDABS(V(I+6,5)) .LT. 1.) GO TO 524

IF (DA_SIV(I+6,5)) ,LE, 1,0001) GO TO 597

KOUNT:-I

CALL SPACE (2)

WRITE (6,596)
596 FORMAT (/27H UNACCEPTABLE ERROR IN ATAN)

RETURN

597 CALL SPACE (2)

WRITE (6,598) ..... I
598 FORMAT (/27H ACCEPTABLE ERROR IN ATAN)

V(I+6,6)=DSIGNIPI/2.,V(I+6.5)) ............. '
GO TO 523

524 VII+6,6)=DAT#N(V-(-I+6,B)/DSQRTII.-V(I+6.5)**2)) ........ "

523 IF(V(I_,I) .. [. 0.) GO TO 512

511 V(l+6,7)=V(,,2)*V(9,2)+V(l,3)*V(9,3)+V(l,_)*V(9,_)

GO TO 513
512 V( I+6,7)=V( 13,?-)/V(13,5)-V(1,1) .......
513 IF(V(I+6,7) ,GE, 0,) GO TO 517

IF(VfI+6,Si--.G-E, 0.) "0 TO 516
V(I+6,6)=-P-I-V(I+6,6) _'

GO TO 517
516 V(I+6,6)=PI-V(I+6,6)

_L

517 CONTINUE .............
IF(V(13,5) ,EQ, 0,) GO TO 519

VlS,Tl=VlT,7)@*2/V(16,1)**3*V(13,5)*V(13o6) ........... --
GO TO 520

519 V(8,7)=V(16,l)*V(14,1)**2/2_ ......

520 Vl?,5)=V( 16,6)-V(15,6)+V(14,1)*lV(15q5)-V(16,5)}

IF(V(?,5) ,GE, 0o) GO TO 522

IF (v(e,?),LT,0,) GO T0 522

V(?,5):V(TCS-}#2.*Pl ...........

522 V(?,5)=V(7,B)/V(8,?}
UPDATE ESTIMATEOF_CURVE

IF (V(T,5),EQ,O,) GO TO 525

V{6,7)=(V(6,T)_V(7,5) )/V(?,5)** 2 - ,
525 RETURN

END .........
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_IBFTC P_T X:7,M94/2

SUB_OUT I NE P#INT
CO_MOlg /CO_/ V, .... F, Pl . RAD, Vl

DOUBLE PRECISION V( 16,7),F(80,41 ,PI_RAD,VI(16)

COMMON /COM/ IT#AToKOUNT

COMMON /COM/ NBODYI, NBODY

• COMMON /COM/ IP#T(4}, IPRTI(4)

COMMON /COM/ KL, [PGt .... L I._C_3___ LINPG_E ....
COMMON /CO_/ NBLOCK

DOUBLE PRECIS!ON TEMP(16),RV,VV,RS.VS......................

DO 351 J=2,4

DO 350 I=1,5,4
VII,J)=V( 1,6)*V( l+l,J}

V(I+2,J}=V(4,7)_V(I+3,J)

F(I,J-I I=V(I,6}*F(IiJ-I}

350 F(I+],J-I)=V(4,?)*F(I+I,J-I)

35I CONTINUE

DO 352 J:],4
352 V(|5,J)=V(SiS)_V(-16tJ)

V(I,l ):V(2, I)/V(I,5)

V(3,I )=VI4,1)/V(I,5)

V(5,l}:V(6,1)*V{6,5}

Vl?,l):V(B,l)*V(6,6)

RV:DSQ#T(V(5,2}**2+V(5,3)**2+V(5=4}**2)

VV:DSORT(V(?,2)**2+V(?,3)**2+V(?,4)_2}

RS:DSQRT(V(I,2)**2+V(],3)*_2+V(I,4}**2}

VS=DSQRT(V(3,2}**2+V(3,3}*w2+V(3,4)*_2) "
410 CALL SPACE (NBLOCK)

WRITE (6,411-) (V(I,II,I=I,4},RS,(V(3,1I,I=2,4),VS .....

411 FORMAT (I/III20H TRAJECTORY TIME = IPD20-|I//
$ 4 OH SPACECRAFT INERT IAL TRAJECTORY /

$ 40H POSITION . . • . . . . . . . . . . 4D20. I I/
$ 40H VELOCITY • , • o • • • • • • • • . 4D20.II)

420 IF (IPRT(2),EG_O} GO TO 430
. _._.

TEMP( I) = F(I,I)

TEMP( 2} = F(I ,2)

TEMP(3 ) = F(I,3) ..............

TEMP(4) =DSQRT(TEMP(I}**2+TEMP(2)_*2+TEMP{3}**2}

TEMP( 5} = F(2-,-I) .....

TEMP{6 ) = F(2,2)

TEMP( 7} = F(2,3} ..........

TERP(8) =DSQRT(TEMP(5}**2+TEMP(6)**2+TEMPI?)**2)

TEMP( 9) : F(5,I) .........

TEMP(IO) = F(5,2)

TEMP(11} = F(5,3}

TEMP(12)=DSQRT(TEMP(g}**2+TEMP(IO}**2+TEMP(II)**2}

TEMP(13) = Fi6,i-i ...........

TEMP(Ia} = F(6,2}

TEMP{15) = F(6,3)

TEMP(16}=DSQRT(TEMP(13}**2+TEMP(14)*_2+TEMP(15}_*2)

WRITE C6,42I} V(3_-_,(TEMP(1),I=I,]6} ........

421 FORMAT (/// 20H EPHEMERIS TIME = IPD20,II//

$ 40H EPHEMERIS DATA /

$ 40H POSITION OF EARTH , , , , • • , , 4D20,11/
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$ 40H VELOCITY OF EARTH- . . • . • , . . 4DZC. I 1//
$ 40H POSITION OF MOON • • • • • t • . 4D2011 I/

$ 40H VELOCITY OF MOON , , , , , , , , 4D2C,II) '

430 IF (IPRT(3),EO,O) GO TO 440
TEMP ( I ) = V(I,_}-F(I,I)

TEMP ( 2) = V( 1.3)-F(1,2)
TEMP (3) = V-iI-,4)-F(I13)

TEMP( 4)=DSQRT(TEMP(I )*_2+TEMP(2}**2+TEMP(3)**2)

TEMP ( 5) = V(3,2)-F(2,1)
TEMP ( 6) = V(3,3)-F(2,2)
TEMP ( 7) = V(3•4)-F(2,3)
TEMP( e)=DSQRT(TEMP(5)**2+TEMP(6)**2+TEMP(7)*_2)
TEMP (9 ) = V(1.2)-F(5,1) ....
TEMP (}0) = V(|43)-F(5,_)
TE_P (11) = V(1_4)-F(513) -
rEMP(12)=DSQRT(TEMP(9)_*2+TEMP(IO)**2+TEMP(ll)**2)

TEMP (13) = V(3,2)-F(6tl)
TEMP (14) = V(313)-F(612)

TEMP (15) _- V(394)-F(6_3) i

TEMP(I6)=DSQRT(TEMP(13)*_2+TEMP(14)*_2+TEMP(15)_*2)
WRITE (6,431) (TEMP(I)tI=lI16)

431 FORMAT(/// 40H SPACECRAFT RELATIVE TRAJECTORIES /
$ 40H POSITION REL, TO EARTH • , , i , • 4620,11/ --
$ 40H VELOCITY REL, TO EARTH , , , , , , 4D20,II/I

$ 4OH POSITION REL, TO MOON • . • • . •-#D26,11/

$ 40H VELOCITY REL, TO MOON • , , , , , 4D20,II )

440 IF (IPRT(4),EQ.o) RETURN ..........

TEMP(1)=V( 9,2)*V(I,6)

TEMP(2)=V(-gI3)*V(I,6) .....
TEMP(3)=V( 914)*V(1,6)
TEMP(4)=V( 9.1)_V(1,6)
TEMP(5)=V(Ili2)_V(4qT)
TEMP(6)=V(li.3)_V(-_7) .......
TEMP(7)=V(llI4)_V(4,7)
TEMP(8)=DSQRT(TEMP(5)_2+TEMP(6)_2+TEMP(?)wW2) .........
WRITE (6,441) (V(5, I},I=2,_),RV,(V(7, I),I=2,4),VV,

$ (TEMP(1),I=I,8),

$ (V(15,1),l=2,4),V(15,1)i(V(14,1),l=2,4)•V(14,1),

$ VlSll)iV(7,1)
441 FORMAT(/// 20H VIRTUAL MASS DATA /

$ ........--4EH" VIRTUAL MASS POSITION , , , , , , 4{-I-l_D_O,i-I

$)/ 40H VIRTUAL MASS VELOCITY • , • , , , 4D20,II/

$ - 4OH SPACECRAFT POS. REL'. TO V.M. • . . _D20.IlI/--

$ 40H SPACECRAFT VEL. REL. TO V.M. • . . 4D20,11/
$ - _OH KEPLER (ANG. NON.) VECTOR. • . . . 4_0.1I-7 -

$ 40H ECCENTRICITY VECTOR • • , • , , , 4D20,111

$ "-2-4H V,M, MAGN, = D20,11/ .........

$ 24H V,M, MAGN, RATE = D20,11)
RETURN

- END
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$1BFTC EST XR?,M94/2

SUBROUTINE ESTMT ..........................

COMMON /COM/ V, F, Pl, RAD, Vl

DOUBLE PRECISION V(li6tT)itF(B0t4ii}iPltRADIV.I(16 ] ............

COMMON /COM/ ITRAT,KOUNT

COMMON /COM/ NBODYI t NBODY___ ..............
COMMON /COM/ IPRT(4), IPRTI(4)

COMMON /COM/ KL, IPG., LINCT, ...._INPGE_

COMMON /COM/ NBLOCK

C INDEX VALUES IN V ARRAY...........................

DO 361 I=I,912

DO 360 J=l,4 .....................

360 V(I,J)=V(I+I,J)

361 CONTINUE

ITRAT=I

C ESTABLISH COMPUTING TIME INCREMENT

395 V(13,4)=V(TiS)*V(1615)/(V(1515)-V(16,5))
IF (V(7,6).EQ, O,) V(13+4)=-I,

V(II,I)=DSQRT(V(II,2)**2+V(II,3)**2+V(III4)**2)

V(?_6)=V(3,6)*V(9,1)/V(IIII)

IF{V(1314) ,LT, 0,) GO TO 394

IF(V(1314) _GT, 1,1"V(7+6)) GO TO 394

V(Ti6)=V(13,4)

CALL SPACE (5)

WRITE (6,6000)

6000 FORMAT (//2X,19HMAJOR AXIS CROSSING//IH )

GO TO _O0
3g4 IF(Vil.l)+l.l*V(716) .LT. V(i313)) GO TO 378

390 V(746)=V(13,3)-V(l, 1)
V(13,3)=V(1313)+V(3,5)

400 KOUNT = I

C INCREMENT TIMES

3?8 DO 379 I:I1312

_79 V(I+I_I)=V( l_i )+V(7,6)

V(8,5)=V(7,-6)**2 ...............

IF (V(2,1),GE,V(!3,3)) V(13,3)=V(13.3)+V(315)

C ESTIMATE VIRTUAL MASS FINAL POSITION AND MAGNITUDE

V(6,1)=V(5,1)+V(?,I}*V(?.6)+V(B,6)*V(815)

DO 380 J=2,4
380 V(6_J)=V(5,J)+V(?qJ)*V(?,6)+V(10_J+3)_V(StS)

RETURN
END
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$1BFTC BLKDAT XR7 oM94/2

BLOCK DATA

COMMON /COM/ V, F, Pl, ---gAD, Vl .

DOUBLE PRECISION V(16,'7}QF(80,4),PI,RAD,VI(16)

COMMON /COM/ ITRAT,KOUNT

COMMON /COM/ NBODYI, NBODY

COMMON /CON/ IPRT(4), IPRTI(4) '-

COMMON /CO_/ KL, IPG, LINCT, LINPGE

COMMON /COM/ NBLOCK

DATA Pl /3,141592653589793 /

DATA RAD /57,29577951308232 /

DATA NBODYI / 2 /

DATA IPRTI / I,O-,oQo /

DATA L INPGE/60/

DATA Vl / 5,DO, IIWO,DO, I,D-?, 3_O,DO /

END

..

I
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$1BFTC DIN XR?,M94/2

SUBROUTINE DINPT (X_XX, XXX,WD)
DOUBLE PRECISION WD(5)

COMMON/GCDIN/ !CARD(14) .............

READ (5_1) ICARD
I FORMAT (13A6,A2)

BACKSPACE 5

_EAD (5,2) WD
2 FORMAT (A6,2X.4DIB,O)

RETURN
END

ER 14O45
88

1966009743-097



I
• XBFTCSPC XR_,Mg_22.........

SUBROUTINE SPACE_Sb]_._E_,.S_}COMMON /COM/ V, F, Pl, RAD, Vl

DOUBLE PRECISION V(16,7),F(80,_},PI,RAD,VI (16)

-J COMMON ,'CON/ ITRAT,KOUNT

1 COMMON /COM/ NBODYI., ...... NBODY ......
COMMON /COM/ IPRT(4), IPRTI(4)

COMMON /COM/ KL, IPG, LINCT, LINPGE

I ...........................

COMMON /COM/ NBLOCK

IF (LINPGE,LT, (LINCT+LINES) } CALL NEWPGE

LINCT=LINCT+LINES ..........

"Ii RETURN .......... =........
i END

1
I

]

A
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$1BFTC NPG XR7,M9412

SUBROUTINE NEWPGE ..............................

COMMON /COM/ V, F, Pl, RAD, Vl

DOUBLE PRECISION .._(16,7},F(BO,4J.L__tR_.lYI(I_ ........

COMMON /COM/ ITRAT,KOUNT

COMMON /COM/ NBODYI _ NBOOY _._
COMMON /COM/ IPRT(4), IPRTI (a)

COMMON ZC.OM/ _I I IPG, .. LINCT, L!.NRGE ..........................
COMMON /COM/ NBLOCK

IPG=IPG+I ......
WRITE (6,1)

I FORMAT (120_

$I V I R T U A L M A S S P R 0 G R A M F 0 R C 0 M P

SU T I N G S P A C E T R A J E C T 0 R I E S )

C

C WHEN KL = -7777]_._ON_Y TITLE AND PAGE NUMBER ARE GIVEN, AS

C THIS SIGNALS INPUT DIAGNOSTICS ARE TO BE GIVEN, OR INPUT DATA
C IS TO UE LISTED,

C

IF (KL,EQ,-77777) G- TO I0

WRITE (6,2) KL,IPG

2 FORMAT (90X8HPROBLEM 15,6XSHPAGE 14///

$ 40X80H X-_ COMPo -

$ Y - COMP, Z - COMP, RESULTANT )

LINCT=6

RETURN

I0 WRITE (6,3) IPG

3 FORMAT (I09XSHPAGE 14)

LINCT=2

RETURN
.............................

END
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VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The results of this study have shown that the virtual mass technique
provides a practicable and very flexible method for solving the n-body
problem. Identically.the same computer program can be controlled by
a single input tO obtain approximate solutions very quickly, or highly
accurate trajectories in a proportionately longer time. The sample cir-
cumlunar trajectory included in thi_ report gives the spacecraft position
accurate to within 0.02 naut mi at t = 70 hr (approximately 0.33 h_ be-
fore pericynthion) in 160 sec on an IBM 7094 digit:_l co_,puter.

The use of rectangular coordinates and the formulation of the conic

section relationships in terms of the vector orbit:d elements k, e have
resulted in a computationally con_pact program. Without the elaborate
input-output provisions which haw, been incorporated to provide oper-
ational flexibility, the basic computational program easily fits in an
IBM 1620 computer.

I

B. RECOMMENDED FUR_[HER STUDIES

A number of further studies are suggested and will be listed here
without elaboration.

(1) Derive analytical expressions for trajectory sensitivities
from the simple conic section forms relative to the virtual
mass. Use these to propagate the state transition matrix
analytically.

(2) Study techniques for representing aspherical gravitational po-
tentials by appropriate planet-fixed distributic',ns of discrete ,
point masses similar to the method of Ref. 4. Investigate
the integration of such trajectories by _he virtual mass tech-
nique.

(3) Study the problem of computing dynamically consistent tra-
jectories (see Refs. 2 and 5) by investigating an extension of
the virtual mass technique to compute the simultaneous tra-
jectories followed by n gravitating bodies. The procedure
would be to reduce the problem to a series of n two-body sys-
tems at every instant. Each two-body system would consist
of a different one of the n real bodies and a corresponding
fictitious body lumping the effects of all others on the one of
immediate interest. The numerical computation accuracy
would be controlled so as to conserve known integrals: energy,
momentum and uniformity of motion of the center of mass.
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(4) Develop an Encke-like procedure for computing low thrust
trajectories. Here the thrust perturbation would be inte- ,
grated separately and added as a correction to the reference
gravitational trajectory relative to the virtual mass.

(5) Perform a general study of trajectories of the virtual mass
to ascertain, if possible, the fundamental characteristics of
its motion. Also try to find an analytical solution to the vari-
able mass two-body problem.
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